
The Salam-Weinberg model of weak interactions and stellar energy loss rates by neutrino

processes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 1751

(http://iopscience.iop.org/0301-0015/6/11/012)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/11
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math., Nucl. Gen., Vol. 6 ,  November 1973. Printed in Great Britain. 0 1973 

The Salam-Weinberg model of weak interactions and stellar 
energy loss rates by neutrino processes 

S N Biswas, R N Chaudhuri and J K S Taank 
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India 

Received 25 April 1973, in final form 30 May 1973 

Abstract. The energy loss mechanism from stellar bodies through neutrino emission pro- 
cesses has been discussed in the framework of the Salam-Weinberg unified symmetric 
model of weak and electromagnetic interactions. As a test of the model we have considered 
the effect of neutral currents in V G  pair production for the process y + p  + p + v +  a ;  it is 
shown that although the cross section for this process a t  high energies (total centre of mass 
energy > 2 BeV) is dependent on  the structure of the vertices ( p ‘ l 9 : l p )  and ( p ’ l J i l p ) .  
where 9: and J i  are the weak neutral and electromagnetic currents respectively. the energy 
loss rate is not governed by them. The present calculation for the rate of energy loss by 
the yp reaction is in agreement with the rough estimate given by Dicus. However, it is an 
order of magnitude smaller than that calculated by Desrosiers and O’Donnell using local 
interactions of hadrons with leptons through weak neutral currents. 

1. Introduction 

The rate of energy loss from stellar bodies has been studied by many authors using 
various forms of weak interaction theories. The fact that the interactions of neutrinos 
with matter are insignificant at all energies has been made as an interesting starting 
point of all these investigations. The neutrino cross section is ofthe order of 10-44x2 cm2, 
where x is the neutrino momentum in MeV/c, which becomes of the order of cm2 
for neutrinos of momentum 1 BeV/c (Chiu 1966). This implies that the neutrino has 
a mean free path of the order of 10” cm in matter ; thus, once a neutrino is formed 
in the interior of a star which has a radius of about 1013 cm, it escapes from the star 
carrying the energy away. 

There are various neutrino production processes which lead to loss of energy from 
stellar bodies. For example, when the temperature of the stellar interior becomes of 
the order of 6 x IO9 K = m,c2/k (me = mass of the electron, k = Boltzmann’s constant) 
electron pairs are produced in equilibrium with the radiation. These pairs annihilate 
into photons in most cases; only in one out of loz2 annihilations is a neutrino pair 
vefe created. Notwithstanding this fact the pair annihilation process e+  +e-  -+ v, + 
plays a major role in the dissipation of stellar energy, when the temperature and the 
density of the plasma are of the order of 10” K and IO’ g ~ m - ~  respectively. This 
has been shown in detail by Chiu and Morrison (1960), Chiu and Stabler (1961), Chiu 
(1961) and Beaudet et al (1967a) in the point-interaction theory of weak hamiltonians 
(Sudershan and Marshak 1958, Feynman and Gell-Mann 1958). Other important 
energy loss mechanisms through neutrino production processes, eg, y + e + e + v + f 
(photoneutrino of electron) (Pontecorvo 1959, Chiu and Stabler 1961, Ritus 1962, 
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Beaudet et a1 1967a, 1967b), and plasmon -, v +  i;, have also been discussed by a number 
of authors. The plasma-neutrino reaction in the ordinary point-interaction theory 
involves a virtual (e-e+) pair, which in turn produces a vi; pair. That this is the case 
can be seen by considering the propagation of a photon through a degenerate electron 
gas. In such a gas the states up to the Fermi energy are all filled. Thus the propagation 
of the photon through this Fermi vacuum will modify its mode of propagation. This 
effect is taken into account by considering the propagation of the photon through a 
dielectric medium (Adams et a1 1963, Zaidi 1965, Tsytovich 1961, 1964) and its subse- 
quent formation of a vi; pair. 

Some other less important processes are perhaps the vi; pair production through 
the reactions : (a) y + p -P p + v + i; ; and (b) y + y -P v +  i;. Desrosiers and O’Donnell 
(1970) have calculated the energy loss rate for process (a) in the ordinary weak interaction 
theory by introducing weak neutral currents. In principle, process (b) should be very 
effective in transferring the interior energy of stellar bodies away ; for, the initial radiation 
energy confined in a star, because of the small mean free path of the photon, is passed 
on to the carriers for which the star may be almost transparent. This process is, however, 
prohibited in the lowest order of the ordinary weak interaction theory in the current- 
current picture (Gell-Mann 1961). In the intermediate vector boson theory (Lee and 
Yang 1960) the. process, on the other hand, can proceed in the lowest order (Levine 
1967, Campbell 1968, Abak 1971). It should be mentioned here that one of the serious 
defects of the conventional weak interaction theory is that all higher order diagrams 
are divergent (Ioffe 1967, Ioffe and Shabalin 1967, 1968) and these divergences cannot 
be removed systematically due to the nonrenormalizability of the theory. To avoid 
this difficulty various renormalizable weak interaction theories have also been proposed 
(Kummer and Segrt 1965, Christ 1968). In these models it is assumed that weak inter- 
actions are mediated by a number of scalar bosons. The process y + y + v + i; has been 
calculated (Biswas et a1 1973) in the scalar boson exchange model of weak interactions 
and it has been pointed out that the rate of energy loss due to this process shows no 
appreciable difference in temperature dependence from that due to the vector boson 
theory. Although the intermediate scalar boson theory is renormalizable, nevertheless, 
most of the calculations are beset with many masses of the new types of particles needed 
in the renormalizable model. 

Recently, it has been shown by Salam (1968) and Weinberg (1967, 1971) that a 
unified renormalizable theory of weak and electromagnetic interactions may be con- 
structed from a theory of Yang and Mills (1954) with spontaneous breaking of gauge 
invariance. Among the many consequences of the theory the one which is of direct 
relevance to us is the existence of a neutral intermediate vector boson ( Z  boson), 
coupled weakly to a neutral current. The effects of this neutral vector boson in various 
semi-leptonic processes have been calculated by Weinberg (1972). He has also succeeded 
in obtaining the weak neutral current form factors in terms of the weak charged current 
form factors and electromagnetic form factors. Unfortunately, the present data neither 
confirm nor refute the results of his calculations. In view of this, in the present paper 
we consider the effect of the neutral weak currents in the vi;  pair production processes 
in astrophysics. It is to be noted that the reaction y + p + p + v + i; receives contributions 
only from the neutral currents in the lowest order, and therefore, one may hope that 
the study of this process may supply some useful information regarding the existence 
of weak neutral currents. The important energy loss processes like e+ +e- v+i; ,  
and y + e -, e + v + i;, however, receife contributions from both neutral and charged 
currents in this model (Dicus 1972). For the production process y + y  -, v + i ;  we only 
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note that in addition to charged W boson contributions we have also the contributions 
from the neutral Z boson. It is interesting to point out that due to gauge invariance 
requirements the Z boson contributions vanish identically and we are left only with 
the W boson contributions. As shown by Levine (1967) this calculation leads to a 
convergent result in the lowest order since the divergences due to charged W boson 
contributions cancel among themselves. Regarding the convergence criterion (Weinberg 
1971, t’Hooft 1971, Lee B W 1972) of the various results in this renormalizable model 
we may mention here that a number of authors have calculated higher order diagrams 
for different processes and shown that the divergences cancel out exactly if the renormal- 
ization procedure is followed systematically (Lee S Y 1972). 

This symmetric model of weak and electromagnetic interactions has been applied 
in the present paper to calculate the energy loss rate for the neutrino emission process 
y + p -+ p + v + i;. Dicus (1972) has also made a rough estimate of this process in the 
Salam-Weinberg model. He has assumed that the proton couples to the Z boson and 
the photon with the same coupling constants as the electron, and has thus neglected 
the various other form factors occurring in the ypp and Zpp vertices. In particular, 
he has neglected the contribution from the magnetic moment of the proton to its inter- 
actions with the electromagnetic current. Further, the momentum dependent structures 
of the form factors have not been taken into account in his calculations. On the other 
hand, we take into account the various form factors associated with the matrix elements 
of $E and J,” between the two proton states (Weinberg 1972). For the momentum 
dependence of the form factors we assume Sachs type structures which decrease rapidly 
with the square of the momentum transfer of the protons. These structures are important 
in determining the values of the cross section when the total centre of mass (CM) energy 
is greater than 2 BeV. At low energies, however, the cross section varies as the fourth 
power of the CM energy of the photon and is independent of the momentum dependent 
structures of the form factors. Next we calculate the rate of loss of energy from the 
square of the matrix element multiplied by the energy taken away by the neutrino pair, 
by using the number densities of the particles given by Bose and Fermi statistics. In 
doing so we note that the contributions from the high energies are extremely small at 
relevant temperatures and mass densities of the stellar bodies, and so we are allowed to 
calculate it in the nonrelativistic limit. In this limit the momentum dependent structures 
of the form factors are not very relevant. We find that the energy loss rate is quite small 
compared to other dominant energy emission processes, and therefore, will not play 
an important role in the evolution of stars. This model predicts a value lower than the 
previously estimated value (Desrosiers and O’Donnell 1970) in the ordinary point- 
interaction theory with a neutral current by a factor of five. However, our results are 
in agreement with the estimates given by Dicus (1972). Furthermore, the process 
y + p + p + v + i; dominates over the other known minor processes (Levine 1967, Hieu 
and Shabalin 1963) and so greater refinement of stellar evolution models may find the 
difference between this theory and the point-interaction theory with neutral currents. 

In the next section we write down the lagrangian of the symmetric unified model of 
weak and electromagnetic interactions, and apply it to calculate vi; pair production 
from the photoproduction process of the proton. In § 3 we calculate the cross section 
for this process by assuming that the protons form a nondegenerate Fermi gas. We 
have shown that this assumption is justifiable for the relevant temperatures and mass 
densities of the plasma. In $ 4  we obtain the expression for the rate of loss of energy in 
the nonrelativistic limit. Finally, we discuss briefly the energy loss mechanisms due to 
other processes in the last section. 
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2. The process 7+p + p+v+V in the neutral current model of Salam and Weinberg 

The part of the interaction lagrangian of the renormalizable theory of Salam (1968) 
and Weinberg (1967, 1971) which is relevant for the description of the photoneutrino 
process 

?@) + P(P) + P@’) + v(q) + ij(4’) (1) 

(2) 

is given by 

L?, = $i(g2 +g’2)1/2{ijey,(l +y5)v,+(e + p)}Z,++(g2 +g’2)1/2Zl$f-eeA,Jf: 

where Jf: and f f  are the electromagnetic and weak neutral currents, respectively. The 
pair of independent coupling constants g and g’ occurring in (2) are related to the weak 
coupling constant G,,  the electric charge e, and the mass m, of the neutral boson by 
the following expressions : 

(3) f 2  - 1 j 2  G, = (g2 +g‘2)/8mi and e = gg‘(g2 +g 1 . 
In order to evaluate the matrix element for the process (1) in this model we note 

that the weak and electromagnetic form factors of protons are required (figure 1). We 

( b )  

Figure 1. The lowest order Feynman diagrams for the process y + p  + p+v,+i;,. The 
symbols in parentheses denote the momenta of the particles. 

first define the following vertices (Weinberg 1972) which occur in our matrix element : 

(4) 

( 5 )  

(P(p’)lY:lP(P)) = i i(P’) {g%, + g h Y 5  +if% + P ’ h  + ihoA(P - P’InY5 b(P) 

(P(P’)  IJ?lP(P)) = f W ) { @ Y ,  + iFP(P + P ’ ) l } U ( P )  

and 

where g:, g i  ,f$, h i ,  GP, and FP are real dimensionless functions of the invariant squared 
momentum transfer (p’ - p)’. 

It should be mentioned that the process (1) actually involves two reactions, one 
involving a pair of electron neutrinos and the other, a pair of muon neutrinos. We must 
consider both to obtain the total rate of loss of energy. Using the lagrangian (2) and 
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the vertex functions (4) and ( 5 )  we see that the sum ofthe matrix elements for the diagrams 
(la) and (lb) is of the following form: 

where cp(k)  is the photon polarization, 

and 

x,, = fib‘) M Y ”  +g:Y,Y, + 2 i f w  {Y . k(GP(0)YP+ 2iFP(0)Pp) + 2PplP’ * k 

+ {(GP(O)Y, + 2iFP(0)P;)Y . k-  2P;j k;Y,+g:Y,Y, + 2if:PJP . kI4P).  (8) 

In deriving (6) we have considered only one type of neutrino; the gauge condition 
c . k = 0 is used, and plasma effects are neglected. 

Since the cross section as well as the energy loss rate involves the square of the matrix 
element, we square (6),  average over the initial spin and polarization states, and sum 
over the final spin states. The result of our calculations is finally given by 

(9) 
- I Til2 e2(g2 +g’2)2(2.rr)46(4)(p + k - p’ - q - q’) ’ 
T - 212EpEkEp.E,Eq.(p.  k)’(p’ . k)2(mg+2q. q’)2 i= C CiT - 

where Ci C,(p, p’ ,  k) and 
The expressions for the scalars 

T,(p, p’ ,  k, q, 4’). 
and Ci are given in the appendix. 

3. The chemical potential of a proton and the cross section for the photoneutrino process 
of protons 

We will assume that the star consists of a completely ionized gas in thermal equilibrium 
at a temperature T K. The number densities of protons and photons are as usual given 
by Fermi-Dirac and Bose distributions respectively : 

d3k 

where p is the chemical potential of a proton including its rest mass. If we neglect the 
mass of the electrons and positrons then the matter density p of the plasma is given by 

np = NP/Pe (12)  
where N is Avogadro’s number and p e  is related to the abundance Xj,  the nuclear 
charge Z j ,  and the atomic weight Ai of the jth atomic species in the stellar body by 

1 x j z j  -=E-, 
Pe j Aj 

We evaluate the integral (10) for various values of p and T and show the relationship 
between p/pe and p for different temperatures in figure 2. It should be noted that in the 
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IO 10’ io5 IO’ io9 I 
PIA ( g  ~ m - ~ )  

I”  

Figure 2. The chemical potential p(MeV) of a proton as a function of p/pe(gcm-3) for 
different temperatures T(K). 

usual ranges of temperatures and mass densities of the plasma, the contributions to the 
integral (10) from the high momentum states are extremely small and therefore one 
may use the nonrelativistic limit in the calculation of energy loss rate where the distri- 
bution functions for the initial and the final particles are occurring. 

The number densities for the outgoing particles are described by 

We note that the factor l/[exp{(E,.-p)/kT) + 11 in (14) may be neglected in comparison 
to 1 for densities and temperatures prevailing in stars (figure 2). In other words we may 
assume that the protons in the stars form a nondegenerate Fermi gas. 

Using (9) we have the total cross section of the photoneutrino process (1) for non- 
degenerate protons : 

(8n)SE,E,(p. k)’ 
e2(g2+g”)’ 5 d3p‘ 1 

fs= 
E,,@‘. k)’ {M: +(p+k-p’)’)’ 

Making use of Lenard’s identity (Lenard 1953) 

d3 n 
24 
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we integrate over the neutrino momentum states and note that the contributions from 
C,T, for i = 7 to 1 1  vanish identically. The p‘  integration is done in the CM system of the 
initial particles and the cross section oCM is evaluated numerically for different values of 
the CM energy of the photon (figure 3). For the different weak and electromagnetic 

~ c r ~ ~  - 

- 
% v 

z 

I IO IO2 Id 
Ek (MeV) 

Figure 3. The cross section nCM (cm2) for the process y + p  + p +  v , + i ,  as a function of 
the centre of mass energy E, (MeV) of the photon for three different values of the form 
factors Sv(q2)  = XA(q2); curves A, B and C respectively correspond to Xv(q2) = 1, 
Xv(q2) = l/(l -q2/m:)  and X;(q2) = 1/(1 -q2/m:)’ where m, = 1 BeV. 

couplings of protons we have used the following values of the form factors (Weinberg 
1972) : 

GP(0) = 2.79, 

g;(q2) = (2.35 - 5.58 sin28)Zv(q2) 

FP(0) = 1.79/2mN 

f t ( q 2 )  = (1.85 - 3.58 sin28)Zv(q2)/2m,, 

and 

gi(q2) = o ‘ 6 s A ( q 2 )  

where 8 is the mixing angle defined by 

g’/g = tan 8 (20) 
and is the nucleon mass. 

following two forms : 
For the q2 dependence of the vector and axial-vector form factors we have taken the 

(i) #V(q2) = Z A ( q 2 )  = l / ( l -  q2/m:) (2 1 4  

(ii) ZV(4’) = 224’) = 1 / u -  q2/m,2)’ (2 1 b) 

and 

where m, is a mass parameter. For the usual Sachs’ dipole fit (21b) the experiments on 
electron-proton scattering indicate that m, = 0.71 BeVfor low values ofq’ (Gasiorowicz 
1966). In our calculations, however, we set m, = 1 BeV for both the forms (21a) and (21b) 
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and find that the cross section is very well described by Xv(0) and X’(0) at low photon 
energies (figure 3). 

For the value of the mixing angle 8 we look into the process 5, + e-  -, 5, +e -  and 
v+p  -, v+p in Weinbergvs model and find that the present experimental evidences 
indicate 8 N 30” (Weinberg 1972). In the Salam-Weinberg model the lowest value of the 
mass of the intermediate charged vector boson is m, N 37.3BeV (Weinberg 1971). 
However, using different models originating from the same gauge symmetry, Schechter 
and Ueda (1970) and Lee (1971) have shown that m ,  comes out to  be precisely 37.3 BeV. 
This value of m ,  in turn gives an estimate of m, through the relation 

mg = (g2  +g’2)m&/g2.  

About the cross section in the CM system we may point out that rsCM can be described 
by the empirical relation 

rsCM 2: 9.32 x 10-55 E: (in cm2) (22) 

in the nonrelativistic region. In (22) E,, the CM energy of the photon, is measured in MeV. 
We may point out that the value of m ,  chosen here is not crucial; we have varied the 
value of m, over a large range, including m, N 53 BeV obtained by Schwinger (1973) 
within gauge models, and found that the result does not change significantly when m ,  is 
sufficiently large, say greater than 10 BeV, and E ,  is less than 1 BeV. It may be mentioned 
that the cross section for the photoneutrino process of electrons has the same energy 
dependence (E:) in the nonrelativistic region for a nondegenerate electron gas. 

4. Energy loss rate 

The energy loss rate due to the process y + p -, p + v, + i ,  is 
IT,i12 Q = dn, dn, s (E,+ E, - E,,) dn,, ss dn, dn,, - 

i f  T 

where yi C, I T,J2/T is given by equation (9). 

ate case; and hence we may simplify (23) to 
As explained earlier we will confine ourselves to  the nonrelativistic and nondegener- 

* * 

Now using equations (lo), (1 l), (12), and (22) we evaluate the integrals in equation (24) to 
find 

which is about one-fifth of the value, 28.8 T;/pe erg g- ’ s-’, given by Desrosiers and 
O’Donnell(l970) in the point interaction theory with a neutral current. Our result for 
the energy loss, however, agrees with the value estimated by Dicus (1972) from the 
expression of the energy loss rate due to the process y + e -, e + v + 5 by suitably replacing 
the mass and the coupling constants. 
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5. Discussion 

Most astrophysically important reactions have a very sharp dependence on temperature 
above lo9 K. In a comparison of reactions, therefore, the question of the exact power of 
T9 to use is crucial. The present calculation shows that the loss of energy due to the 
photoneutrino process of protons depends on TZ which is typical of the more important 
reactions in neutrino astrophysics involving electrons. Although it has almost the same 
temperature dependence as the other important neutrino emission processes, this 
process is negligible compared to others because of the heavy mass of the proton com- 
pared to that of the electron. This reaction, however, has a dominant energy loss rate 
over the other minor sources of neutrino emission. As mentioned earlier the photon- 
photon scattering ( y  + ?; + v + V) rate calculated in this model is exactly the same as in the 
charged intermediate vector boson theory and in the latter model Levine (1967) has 
shown that the energy loss rate is unimportant for all temperatures below 1013 K. Hieu 
and Shabalin (1963) have found that the energy loss rate in other similar processes like 
y + y + y  + v + V is also unimportant. 

There is another point of view from which the reaction y + p + p + v + V should be 
studied. At present there are various models of weak interactions. However, contrary to 
the normal theories of weak interactions Weinberg’s model predicts the existence of 
neutral currents which contain the neutrino term Vyi(l + y Jv. Certainly, astrophysical 
neutrino processes can serve as an interesting probe to determine the existence of these 
neutral currents. 
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T,, = 2{p2(k .  4‘ p‘ . q - k  . p‘  . q ‘ ) + p .  k ( p ‘ .  q ’ p .  4-p' . p . q ‘ ) + p .  p ‘ ( p .  4‘ k .  

- P . 4 k .4‘)} 

C ,  = 8PQ(h+ i)- 16mimU + 16V{PQ(B2 + L 2 ) -  ( p  . p‘  + B -  L)m}  

+ 16mp{wQ + P(B - L)(PW- Q X )  - P(1W- j X ) }  

C ,  = 16PQG(D + G)  + 16dEQ - 4M { j (H  + G)  + 2aQ} + 8QGMR - 421 + 4m; R M  

+ 32L V ( L Q  - QZ - m i P  - p’ . pL) + 32miL U( Q - 2L)  + 16g:Z 

x { -m$! , (P+Q)- jQ}-8miPQZ2+m,[ -  16EQg;(B-L)+4~+8g: 

x { - QM(B - L)- 2QG(P- Q)+ 2jM +4LG(2P- Q)- 2 L M R }  

+ 16PQIG+8miZM(P+Q)+ 16LQ(X-  Y ) ]  

C ,  = - ~ P Q ( G C + D H + ~ G H ) - ~ E P ~ + ~ ~ P M + ~ Y Q + ~ ~ H M - ~ Q H M R + ~ U  
+ 4 0 M R  - 8dEQ - 4G(AR - s) + 16 V {  LP(B - L) - PQ(B - L) + m 

+ m$(P+ Q)+ 2p . p’L2} - 16m $ U ( P +  Q -4L)+ 8g:{ 2PQB(Z + J )  

-PQJ(B-L)-PZ(j-miL)-QJ(m~L+I)}  +8PQZJp. p’ 

+mp[4g:{2BN(P+Q)-Q(B-L)(N-2C)+ 2QH(P-Q)-2s 

-4L(H+ G)(2P-  Q)+ 2L(t+ M R ) +  2PG(P- Q)- 2BM(P+ Q)  

+ P M ( B  - L )  + 2 jM}  + 8g;{ EQ(B - L) - 2BE(P - Q) + PE(B - L)}  

- 8PQHI + 40Z(P+ Q)+ 8P’GJ- 4 p .  p’MJ(P+ Q)+ 8L(P+ Q)( Y -  X )  

- 4u] 

C ,  = 16PQH(C+H)+ ~ ~ ~ E P - ~ ~ P - ~ S H + ~ H A R - ~ ~ - ~ ~ R + ~ ~ L V ( P Q - ~ B P  

+ PL - Qmi - Lp . p ’ )  + 32m;L U ( P  - 2L)  + 16g:{ P 2 J ( B  - L )  - IPJ 

+m$LQ(Z+J)} -8m;PQ.J’ +mp[16giE{2B(P-Q)-P(B-L)}  

+ 8&{4BC(P+ Q)-  2C(B - L)(P+ Q)+ ( B  - L ) ( N P +  2CQ) - 2PH(P - Q)  

- 2s + 4LH(2P - Q)  - 2 tL}  - 16P2JH + 16PL(X - Y )  + 4~ + 8(P + Q )  

x ( -  N m i  + 2Cp .  p ’ ) J ]  

C 5  = - 8aPG + 4 a M R  - 8dES + 1 6 ~ .  p’LV(Q - L) + 16miLU(B + Q - 2L)  + 8g:I 

x { p  . p ’ j +  miP(B-  L)+ m i j }  + mp{8yG + 8z+ 4g tMR(B-  L)+ 16PLW 

+ 8aPZ + 8 x }  

C ,  = -8P(i + h)+8aPH -4rR + 8dES + 16V{ - P(B-  L)’ + 1B + miLQ + p  . p’L’} 

- 16miLU(B + P - 2L)  + 8g:J{p. p‘l - p  . p’P(B - L)  + mil}  

+ m,{ - 8yH - 8~ - 4g:t(B- L)-  16PLX + 8bPJ- 1 6 ~  - 8 ~ )  

C ,  = - 32g:g;j(B- L)-  3 2 m & ! j E  

C8 = - 16P(aE+bF)-32g,0g~P(B2-L2)-32m&{PE(B-L)+ I F }  

C ,  = 32gtg i{m-PQ(B-L)}  
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C l o  = 8PFH + 8Ea - 4(Nf + 2Cd) - 32g$'gi(L2 + BP) - 8g iJ{P(B  - L)  - I } + 4mp 

X { 2g$E(B - L )  - 4g$'L(E + F )  +&(B - L)(2C - N )  + 2giH(P+ Q)}  

C l l  = - 8PFG-8aE+4dM +32g$gi(LZ+BQ)+8gijZ-4mp{2Eg$(B-L)-4g$L 

x (E+F)+g:M(B-L)+2&G(P+Q)} 

where 

P = p . k, Q = p' . k ,  B = GP(0)Q, L = GP(0)P, C = 2Fp(0)g$P, D = 2FP(0)g:Q, 

E = 2FP(0)&P, F = 2FP(O)giQ, G = 2Lf$ ,  H = 2BfV0, I = 4FP(O)f:P, 

J = 4FP(0)f$Q, M = 4Pf$'+2C, N = 4 Q f $ ,  A = NP+2CQ, 0 = Np.p ' -2Cmi  

R = - m i + p . p ' ,  S = m i + p . p ' ,  U = g t 2 - g i 2 ,  v = g t 2  + g p ,  

W =  Dg$-Fgi ,  X = Cg$+E&, Y = Dg$'+Fgi, Z = Cg:-Egi,  

a = Dp.p '+miC,  b = - m i D - C p . p ' ,  d = Fp.p ' -miE ,  f = -Fm;+Ep.p ' ,  

h = -aC+bD, i = dE+jF ,  j = Qp.p '+miP ,  1 = -Qmi -Pp .p ' ,  

m = lQ-jP, n = - m  i ( N2+4C2)+4p .p 'CN,  r = 2aC+bN, s = lN+2jC, 

t = R(N+2C) ,  U = 8g iE( j -LS) ,  U = -4miE2S,  w = l Y - j Z ,  

x = - m $ ( W - z ) - p . p ' L ( ~ -  Y ) ,  y = Z ~ : P ( ~ L - B ) - ~ $ ' ( ~ - I ) ,  z = g i E s ( B - L ) .  
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